Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deep carbon cycle is crucial for mantle dynamics and maintaining Earth’s habitability. Recycled carbonates are a strong oxidant in mantle carbon-iron redox reactions, leading to the formation of highly oxidized mantle domains and deep carbon storage. Here we report high Fe3+/∑Fe values in Cenozoic intraplate basalts from eastern China, which are correlated with geochemical and isotopic compositions that point to a common role of carbonated melt with recycled carbonate signatures. We propose that the source of these highly oxidized basalts has been oxidized by carbonated melts derived from the stagnant subducted slab in the mantle transition zone. Diamonds formed during the carbon-iron redox reaction were separated from the melt due to density differences. This would leave a large amount of carbon (about four times of preindustrial atmospheric carbon budget) stored in the deep mantle and isolated from global carbon cycle. As such, the amounts of subducted slabs stagnated at mantle transition zone can be an important factor regulating the climate.more » « less
-
Abstract Chalcogenide-based nonvolatile phase change materials (PCMs) have a long history of usage, from bulk disk memory to all-optic neuromorphic computing circuits. Being able to perform uniform phase transitions over a subwavelength scale makes PCMs particularly suitable for photonic applications. For switching between nonvolatile states, the conventional chalcogenide phase change materials are brought to a melting temperature to break the covalent bonds. The cooling rate determines the final state. Reversible polymorphic layered materials provide an alternative atomic transition mechanism for low-energy electronic (small domain size) and photonic nonvolatile memories (which require a large effective tuning area). The small energy barrier of breaking van der Waals force facilitates low energy, fast-reset, and melting-free phase transitions, which reduces the chance of element segregation-associated device failure. The search for such material families starts with polymorphic In2Se3, which has two layered structures that are topologically similar and stable at room temperature. In this perspective, we first review the history of different memory schemes, compare the thermal dynamics of phase transitions in amorphous-crystalline and In2Se3, detail the device implementations for all-optical memory, and discuss the challenges and opportunities associated with polymorphic memory.more » « less
-
Abstract Trees can differ enormously in their crown architectural traits, such as the scaling relationships between tree height, crown width and stem diameter. Yet despite the importance of crown architecture in shaping the structure and function of terrestrial ecosystems, we lack a complete picture of what drives this incredible diversity in crown shapes. Using data from 374,888 globally distributed trees, we explore how climate, disturbance, competition, functional traits, and evolutionary history constrain the height and crown width scaling relationships of 1914 tree species. We find that variation in height–diameter scaling relationships is primarily controlled by water availability and light competition. Conversely, crown width is predominantly shaped by exposure to wind and fire, while also covarying with functional traits related to mechanical stability and photosynthesis. Additionally, we identify several plant lineages with highly distinctive stem and crown forms, such as the exceedingly slender dipterocarps of Southeast Asia, or the extremely wide crowns of legume trees in African savannas. Our study charts the global spectrum of tree crown architecture and pinpoints the processes that shape the 3D structure of woody ecosystems.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Abstract Arc magmas are produced from the mantle wedge, with possible addition of fluids and melts derived from serpentinites and sediments in the subducting slab. Identification of various sources and their relevant contributions to such magmas is challenging; in particular, at continental arcs where crustal assimilation may overprint initial geochemical signatures. This study presents oxygen isotopic compositions of zoned olivine grains from post-caldera basalts and boron contents and isotopes of these basalts and glassy melt inclusions hosted in quartz and clinopyroxene of silicic tuffs in the Toba volcanic system, Indonesia. High-magnesian (≥87 mol% Fo [forsterite]) cores of olivine in the basalts have δ18O values ranging from 5.12‰ to 6.14‰, indicating that the mantle source underneath Toba is variably enriched in 18O. Olivine with <87 mol% Fo has highly variable (4.8–7.2‰), but overall increased, δ18O values, interpreted to reflect assimilation of high δ18O crustal materials during fractional crystallization. Mass balance calculations constrain the overall volume of crustal assimilation for the basalts as ≤13%. The processes responsible for the 18O-enriched basaltic melts are further constrained by boron data that indicate the addition of <0.1 wt% fluids to the mantle, >40% of the fluids being derived from serpentinites and others from altered oceanic crust and sediments. This amount of fluids can increase δ18O of the magma by only ~0.02‰. Approximately 6–9% sediment-derived melt hybridization in the mantle wedge is further needed to yield basaltic melts with δ18O values in equilibrium with those of the high-Fo olivine cores. The cogenetic silicic tuffs, on the other hand, seem to record a higher proportion of fluid addition dominated by sediment-derived fluids to the mantle source, in addition to crustal assimilation. Our reconnaissance study therefore demonstrates the application of combined B and O isotopes to differentiate between melts and fluids derived from serpentinites and sediments in the subducted slab—an application that can be applied to arc magmas worldwide.more » « less
-
Abstract The primary mechanism of optical memoristive devices relies on phase transitions between amorphous and crystalline states. The slow or energy‐hungry amorphous–crystalline transitions in optical phase‐change materials are detrimental to the scalability and performance of devices. Leveraging an integrated photonic platform, nonvolatile and reversible switching between two layered structures of indium selenide (In2Se3) triggered by a single nanosecond pulse is demonstrated. The high‐resolution pair distribution function reveals the detailed atomistic transition pathways between the layered structures. With interlayer “shear glide” and isosymmetric phase transition, switching between the α‐ and β‐structural states contains low re‐configurational entropy, allowing reversible switching between layered structures. Broadband refractive index contrast, optical transparency, and volumetric effect in the crystalline–crystalline phase transition are experimentally characterized in molecular‐beam‐epitaxy‐grown thin films and compared to ab initio calculations. The nonlinear resonator transmission spectra measure of incremental linear loss rate of 3.3 GHz, introduced by a 1.5 µm‐long In2Se3‐covered layer, resulted from the combinations of material absorption and scattering.more » « less
An official website of the United States government
